线性方程组小x1-x2 x4=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/03/29 07:38:32
设含参数A的线性方程组为(1+A)X1+X2+X3=0

系数行列式=(3+A)A^2由Crammer法则,A≠0且A≠-3时,方程组有唯一解.当A=0时,增广矩阵=111011131110r2-r1,r3-r1111000030000方程组无解.当A=-3

解线性方程组 求齐次线性方程组X1+X2+X3+X4=0,2X1+3X2-X3-2X4=0,5X1+6X2+2X3+X4

该方程组的系数矩阵为11111111111123-1-2→01-3-4→01-3-4562101-3-40000所以,原方程组与方程组X1+X2+X3+X4=0,x2-3x3-4x4=0同解,令x3=

解线性方程组 求齐次线性方程组X1+X2+X3+X4=0,2X1+3X2+4X3+5X4=0,4X1+5X2+6X3+7

1111111111112345→0123→0123456701230000所以,原方程组与方程组X1+X2+X3+X4=0,x2+2x3+3x4=0同解,令x3=1,x4=0,得到方程组的一个解为(

求齐次线性方程组X1+X2+Xn=0的基础解系,

系数矩阵的秩为1基础解系含n-1个向量:a1=(-1,1,0,...,0,0)a2=(0,0,1,...,0,0)...an-2=(0,0,0,...,1,0)an-1=(-1,0,0,...,0,1

3元齐次线性方程组x1+2x2=0 x3=0的一个基础解系

方程组的系数矩阵为120001矩阵的秩为2,有3个未知数,所以基础解系有3-2=1个向量所以得到基础解系为(-2,1,0)^T

求齐次线性方程组x1+x2+2x3-x4=0 ,-x1-3x3+2x4=0 ,2x1+x2+5x3-3x4=0的一般解

基础解系:η1=﹛x1=-1,x2=0,x3=1,x4=1﹜η2=﹛x1=-3,x2=1,x3=1,x4=0﹜通解为:k1η1+k2η2

求齐次线性方程组X1+X2+2X2-X4=0,-X1-3X3+2X4=0,2X1+X2+5X3-3X4=0的一般解.

X1+X2+2X2-X4=0打错,应该是X1+X2+2X3-X4=0┏112-1┓┃-10-32┃┗215-3┛→﹙行初等变换﹚→┏103-2┓┃01-11┃┗0000┛通解﹛x1,x2,x3,x4﹜

齐次线性方程组{X1+X2+3X3+X4=0;2X1-X2+X3-3X4=0;X1+X3-X4=0}的基础解系

系数矩阵是11312-11-3101-1进行初等行变换后是100-201000011则x1-2x4=0,即x1=2x4x2=0x3+x4=0,即x3=-x4基础解系为(2,0,-1,1)

求齐次线性方程组 x1+x2+2x3-x4=0 -x1-3x3+2x4=0 2x1+x2+5x3-3x4=0 的一般解.

解:A=112-1-10-32215-3r2+r1,r3-2r1112-101-110-11-1r1-r2,r3+r2103-201-110000方程组的一般解为:c1(-3,1,1,0)^T+c2(

求齐次线性方程组 X1+x2+2X3-X4=0 -X1 -3x3+2x4=0 2X1+X2+5X3-3X4=0的一般解,

看这里:http://zhidao.baidu.com/question/363570655.html

求齐次线性方程组x1+x2+2x3-x4=0,-x1 -3x3+2x4=0,2x1+x2+5x3-3x4的一般解过程可以

112-1-10-32215-3r2+r1,r3-2r1112-101-110-11-1r1-r2,r3+r2103-201-110000方程组的一般解为:c1(-3,1,1,0)^T+c2(2,-1

设齐次线性方程组:x1+x2+x3+x4=0,x2-x3+2x4=0,2x1+3x2+(a+2)x3+4x4=0,3x1

齐次线性方程组有非零解,则必有系数矩阵的行列式为0.(反之,若系数矩阵的行列式不为0,则它只有零解)|1111||01-12|=0|23a+24||351a+8|化简,得:|1111||01-12||

给定齐次线性方程组{X1+X2+X3+X4=0,X1+KX2+X3-X4=0,X1+X2+KX3-X4=0},问(1)

系数矩阵A=11111k1-111k-1r2-r1,r3-r111110k-10-200k-1-2(1)k≠1时,r(A)=3,方程组的基础解系中含4-r(A)=1个解向量.(2)k=1时,方程组无解

齐次线性方程组x1+x2+x3=0

系数行列式等于01112-1a1-23=3a-12所以a=4

求一个正交变换,化下列型为 标准型:f(x1,x2,x3,X4)=2x1x2+2x1 x3-2x2x3+2x2x4+2x

二次型的矩阵A=200002023|A-λE|=2-λ000-λ2023-λ=-(λ-2)(λ-4)(λ+1)特征值为λ1=2,λ1=4,λ1=-1A-2E=0000-22021-->00000101

求线性方程组{X1+X2+2X3-3X4=0; X1+2X2-X3+2X4=0; 2X1+3X2+X3-X4=0}的基础

112-3(第三行减112-3(第二行减000012-12第二行)112-3第一行)112-3行变换231-1---->231-1---->231-1---->00000000112-3行变换105-