级数1 (根号(n 1) 根号n)根据级数收敛与发散的定义判定收敛性

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/28 13:38:41
已知根号m,根号n是方程x^2-3x+1=0的两个根,求m*根号m-n*根号n/根号m-根号n

分子分母同乘(根号M+根号N)化简得原式等于M+N+根号M*根号N再计算(根号M+根号N)^2=m+n+2根号MN=9所以M+N=7所以原式等于8

级数∑n=1到∞ (根号下n)*sin(1/n^2)的敛散性

收敛,因为当n充分大的时候,sin(1/n^2)

关于级数敛散性的证明 证明级数 ((-1)^n )/((根号n)+(-1)^n)是发散的

首先,由Leibniz判别法,可知级数∑(-1)^n/√n收敛.两级数相减得∑(-1)^n·(1/√n-1/(√n+(-1)^n))=∑1/(√n(√n+(-1)^n)).这是一个正项级数,通项与1/

判断此级数的敛散性:(n1-无穷)(-1)的n次方*根号下(n-根号n)-根号n 答案是发散.具体如何判断!

(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2

判断级数的敛散性.∑ (n=1→∞)(根号n+1减根号n)

结论:发散.√(n+1)-√n=1/[√(n+1)+√n]>1/[√(n+3n)+√n]=(1/3)(1/√n)>=(1/3)(1/n)而∑(1/3)(1/n)=(1/3)∑(1/n)发散所以∑(n=

级数根号下(2n+1)/n的@次方收敛的充要条件是@满足不等式?

@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2

判断级数+∞∑n=1 1/根号下n(n2+1)的敛散性

1/n^p级别的正项级数只要p严格大于1就是收敛,只要p等于1或者小于1就发散——这个结论不是一般都是可以直接用的吗?.1/根号(n(n^2+1))【因为n(n^2+1)=n^3+n>n^3所以1/(

级数(-1)^n(根号n+1-根号n)敛散性

级数(-1)^n(根号n+1-根号n)=级数(-1)^n/(√(n+1)+√n)由于1/(√(n+1)+√n))递减趋于0,由莱布尼兹交错级数判别法,级数收敛又1/(√(n+1)+√n))≥1/(2√

高数 判断级数收敛性∑(n=1到无穷)(根号(n+1)-根号n)

解:因为sn=根号(n+1)-1所以s=lim(n→无穷)sn=lim(根号(n+1)-1)不存在所以该函数收敛

∞ 证明下列级数的收敛性:∑(根号下n+2 减去2倍的根号下n+1 加上根号下n) n=1

通项an=根号(n+2)-根号(n+1)-【根号(n+1)-根号(n)】分子有理化=1/【根号(n+2)+根号(n+1)】-1/【根号(n+1)+根号(n)】通分=【根号(n)-根号(n+2)】/(【

判别级数∑(n=1,∝) sin^n/n*根号下n的敛散性,

考虑其正项级数,对其分子进行放缩,利用比较判别法可知原级数收敛,具体解题步骤如下

级数(-1)^(n)*((根号n)/(n-1)),如何证明它条件收敛

具体见图片再问:可是当n=1时,分母不是等于零吗?这个地方怎么解释?怎样才更严谨?我这里搞不懂再答:嗬,这是我失误,应该从n=2开始的,你要证的级数也是n=2开始的否则当n=1时是无意义的。你只要看你

求级数敛散性,n从2到无穷大,(根号下n)分之一乘ln [(n+1)/(n-1)]

除以(根号下n)分之一与n-1分之2,判断下面敛散性即可

根号(n+1)+n

伪命题啊n=97右边=97!我看了你们的追问追答发现你算错了...大哥证明根号(n+1)-根号n大于根号(n+3)-根号(n+2)分子有理化之后(左边上下同乘根号(n+1)+根号n,右边上下同乘根号(

判断.级数 ( ∞∑n=1 )((n+1/2)的根号-n的根号)的敛散性

分子有理化,(n+1/2)的根号-n的根号,化为0.5/[(n+1/2)的根号+n的根号],大于等于0.25/(n+1/2)的根号,不收敛再问:大于等于0.25/(n+1/2)的根号这一步没看懂再答:

无穷级数 根号n-1/4的根号下(n^2+n)的敛散性

级数Σ√(n-1)/(n^2+n)^(1/4)是发散的.事实上,因    √(n-1)/(n^2+n)^(1/4)=√(1-1/n)/(1+1/n^2)^(1/4)→1≠0(n→∞),据级数收敛的必要

n次根号n再减1这个级数的敛散性

/>您的采纳是我前进的动力~

级数1/2的根号n次方如何证明收敛

a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)