求极限limn趋于正无穷(根号下n-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/27 20:34:09
求极限lim[∫(下限0上限x) (arctan t)^2dt]/根号下(1+x^2) x趋于正无穷

这个直接用洛必达法则就可以啦.最后=(π/2)^2

求当x趋于正无穷时,x乘[根号下(x平方+1)-x]的极限.可以用等价无穷小算吗?

limx*[根号(x^2+1)-x]=limx*[根号(x^2+1)-x][根号(x^2+1)+x]/[根号(x^2+1)+x]=limx/[根号(x^2+1)+x]=lim1/[根号(x^2+1)+

求极限 (sinx-sina)/(x-a) x趋于正无穷

答案好像是0分子有界,分母趋向无穷整体趋向0

1、用洛必达法则求limx趋近于0时 sin^4(2x)/x^3 的极限 2、limn趋于无穷(1/n^a +2/n^a

1.注意到每次上面求导之后会出一个cos2x,这个东西在x->0是极限是1,所以可以扔掉下面的过程中x->0就不写了,逐次求导lim(sin^4(2x)/x^3)=lim(8sin^3(2x)/6x^

求sin(根号下1+x)-sin(根号下x),当x趋于正无穷时的极限是多少?

∵lim(x->+∞)[√(1+x)-√x]=lim(x->+∞)[(1+x-x)/(√(1+x)+√x)](有理化分子)=lim(x->+∞)[1/(√(1+x)+√x)]=0∴lim(x->+∞)

求sin(根号下1+x)-sin(根号下x),当x趋于正无穷时的极限是多少?真的要用夹逼准则吗?

极限为0,不用夹逼准则,先和差化积,再用无穷小与有界变量乘积为0

用极限定义证明:limn→正无穷(根号下n+1-根号下n)=0

对任给的ε>0(ε1/(2ε)^2,于是,取N=[1/(2ε)^2]+1,则当n>N时,有    |√(n+1)-√n|根据极限的定义,成立    lim(n→inf.)[√(n+1)-√n]=0.

limln(1+x)-lnx/x,(x趋于正无穷),求极限

lim[ln(1+x)-lnx]/x=limln[(1+x)/x]/x=limln(1+1/x)/x=0.

用极限定义证明limsinx/根号x=0(x趋于正无穷)

设f(x)=sinx/根号x,需证对任意的ε>0,存在X>0,当x>X时,恒有|f(x)-0|0,当x>X时,恒有|f(x)-0|

limn趋向于无穷根号n3+3^n的极限怎么求

应该是开n次根号用夹逼定理3^n3n→+∞,n次根号2极限为1两边极限都是3所以原式=3

极限 limn趋近于正无穷(2^n-3^n)/4^n如何求呀?

lim(2^n-3^n)/4^n=lim(1/2)^n-lim(3/4)^n=0-0,因为1/2

根号下(x+a)(x-b)减去不在根号里的x,求它的极限,条件是x趋于正无穷

原式=lim(x→正无穷)根号(x+a)(x-b)-x=lim(x→正无穷)x[根号(1+(a-b)/x-ab/x^2)-1]因为x→正无穷所以1/x→0运用等价无穷小lim(x→正无穷)x[根号(1

泰勒公式求极限lim(x趋于正无穷)要有详细过程,

(x^3+3x^2)^(1\3)-(x^4-2x^3)^(1\4)=x[(1+3\x)^(1\3)-(1-2\x)^(1\4)]1\x→0在0处泰勒公式有(1+x)^(1\m)=1+x\m+o(x)∴

高数极限问题:求lim(π/2-arctanx)^(1/lnx) (x趋于正无穷)

设为A(以下求极限符号省略)lnA=ln(pi/2-arctanx)/lnx用L'Hospital:=[1/(pi/2-arctanx)*(-1/(x^2+1))]/(1/x)=-x/[(pi/2-a

limn趋于无穷负2的n次幂加3n次幂除以负2的n+1加3n+1次幂 求极限

limn趋于无穷负2的n次幂加3n次幂除以负2的n+1加3n+1次幂求极限=lim(n->∞)[-(2/3)^n+1]/[-2×(2/3)^n+3]=1/3

求极限limn趋于无穷 1/n^2+2/n^2+...+n-1/n^2+n/n^2

原式=lim(1+2+……+n)/n^2=lim[n(n+1)/2]/n^2=1/2lim(n+1)/n=1/2*lim(1+1/n)=1/2*1=1/2

y=lnx(x趋于正无穷)求极限

正确,极限不存在(但可以表示为limx→+∞lnx=+∞)再问:对对,答案就是这个,我还以为这两者不一样呢。原来是一个意思啊--

已知当X趋于正无穷时,(根号下x^2+x+1)-ax-b的极限是k(已知常数),a,b怎么求

再问:可是答案是b=1/2-ka=1为什么要让1-2b=2???再答:应该是1-2b=2k,b=1/2-k这是比较x幂的系数得到的。