求函数f(x)=xe^(-x)的n阶麦克劳林公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/27 20:40:52
已知函数f(x)=xe^kx求导 用f(x)g(x)公式算

f'(x)=(xe^kx)'=x'*e^kx+x(e^kx)'=e^kx+kx*e^kx=(1+kx)e^kx再问:e的kx方的导数不是kxe^kx-1么再答:不是,[e^g(x)]'=g'(x)*e

已知f(x)的一个原函数是xe^(-x^2),求不定积分f'(x)f''(x)

∫ƒ(x)dx=xe^(-x²)ƒ(x)=(1-2x²)e^(-x²)ƒ'(x)=2x(2x²-3)e^(-x²)∫&#

已知函数f(x)=xe^-x(x∈R) (1)求函数f(x)的单调区间和极值

已知函数f(x)=xe^-x(x∈R)(1)求函数f(x)的单调区间和极值(2)已知函数y=g(x)的图像与函数y=f(x)的图像关于直线x=1对称,证明x>1时,f(x)>g(x)(3)如果x1≠x

设函数f(x)=xe∧(kx) (k不等于零),求f(x)的单调区间

f'(x)=e^(kx)+x*e^(kx)*k令f'(x)>0则1+kx>0若k>0则增区间为x>-1/k减区间为x

求函数f(x)=xe^-x的n阶麦克劳林公式

Rn就是把f的n+1阶导数中的x换成ξ就行了再问:答案上最后一项(也就是Rn)我觉得是(n+1)!而不是n!但是答案上说是n!啊不知道错在哪儿了~再答:右边你提一个x出来,不就是n!了或者这样说,f^

已知函数f(x)=xe∧2x,求dy,y∧n

dy=(e^2x+x*e^2x*2)dx=e^2x(1+2x)dx

已知函数f(x)=xe次方(e为自然对数的底)求函数f(x)的极值

f'(x)=e^x+xe^x=(1+x)e^x=0x=-1因此x=-1时有极小值f(-1)=-1/e

已知y=xe^x,求f^n(0)

根据n阶导数的莱布尼茨得f^n(x)=C(n,0)xe^x+C(n,1)e^xf^n(0)=n

f(x)=xe^kx导函数

f(x)=xe^kxf'(x)=x'*e^kx+x*(e^kx)'=e^kx+kx*e^kx=(1+kx)e^kx

设函数f(x)=xe^x,则f(x)有极___值,为_______.

f(x)=xe^x则:f'(x)=(x)'(e^x)+(x)(e^x)'f'(x)=(x+1)e^x函数f(x)在(-∞,-1)时递减,在(-1,+∞)上递增,则:函数f(x)有极小值,极小值是f(-

已知函数f(x)=xe^-x(x属于R)

喜欢这个ID号,答一下.根据题意,g(x),f(x)关于x=1对称,则有:g(1+x)=f(1-x)令x=x-1,则有g(x)=f(2-x)=(2-x)e^(-(2-x))=(2-x)e^(x-2):

已知函数f(x)=xe^x+1

(1)fˊ(x)=e^x+xe^xf`(0)=1f(0)=1切线方程为y=x+1(2)fˊ(x)=e^x+xe^x=e^x(1+x)因为e^x>0,故1+x0,f(x)为增函数.(-∞,-1)上单调递

已知函数f(x)=xe^x则f'(x)=

f'(x)=(x+1)e^x

f(x)=xe^-x上函数最大值最小值

f(x)'=e^(-x)-xe^(-x)=e^(-x)(1-x)这样当x在[0,1]上时f递增,在[1,2]上f递减又f(0)=0,f(1)=e^(-1),f(2)=2e^(-2)因此最大值为e^(-

y=xe^x 求函数导数

解y=xe^xy'=(x)'e^x+x(e^x)'=e^x+xe^x

函数f(x)=0.5x^2 +e^x -xe^x

f'(x)=(0.5x^2+e^x-xe^x)'=x+e^x-e^x-xe^x=x-xe^x导数等于0时,x等于0请注意最后一项的求导结果(应用乘积函数的求导法则)(F(x)G(x))'=F(x)G'

求函数f(x)=xe^x+Inx/sinx的导数

f'(x)=e^x+xe^x+(sinx/x-lnxcosx)/(sinx)^2当x=π/2时,f(π/2)=π/2e^(π/2)+ln(π/2)→切点的纵坐标f'(π/2)=e^(π/2)(π/2+

f(x)=xe^(kx)的导函数

f(x)=xe^(kx)f'(x)=e^(kx)+kxe^(kx)

f(x+1)的不定积分是xeˇ(x+1)+c,求函数f(x)

设t=x+1,则x=t-1,代入∫f(x+1)dx=xeˇ(x+1)+c,得到∫f(t)dt=(t-1)e^t+c对上式求导得f(t)=e^t+(t-1)e^t=te^t即f(x)=xe^x

已知函数f(x)=x^2+2x,g(x)=xe^2

题目是不是有错,第二个表达式,你确定是这样?再问:是g(x)=xe^x再答: