A可以对角化且特征值都大于0,可以得出A可以表示成两个正定矩阵乘积

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 23:26:21
设A是非零的幂零矩阵,即A不是零矩阵且存在自然数m使得A^m=0证明:A的特征值全为零且A不可对角化

设a是A的特征值则a^m是A^m的特征值(定理)而A^m=0,零矩阵只有0特征值所以a^m=0所以a=0.即A的特征值只有0.又因为A≠0所以r(A)>=1所以AX=0的基础解系所含向量的个数n-r(

矩阵A的特征值都为正负一,且可相似对角化,证明A^2=E

看看能看懂不? 特征值都为正负1   对应相乘之后都是1 那个不影响结果~

请问为什么两个矩阵都可以对角化,而且特征值相同,这两个矩阵就相似呢?

矩阵特征值是特征方程解出来的根,如果题目没有要求,而且不对应特征向量的话,特征根是不存在顺序的.1,2,3,4,和1,3,2,4,没有区别,即使你相似对角化成这两个矩阵,后一个矩阵也可以用初等变换,对

n阶矩阵A的n个特征值互不相同是A可以对角化的充分条件?

确实是n阶矩阵A有n个线性无关向量可以推出A可以对角化.但n阶矩阵A的n个特征值互不相同时,每个特征值各取一个特征向量就找到了n个线性无关的特征向量(对应于不同特征值的特征向量是线性无关的),所以A一

若n阶矩阵A的n个特征值都相等,且A可对角化,则A一定是数量矩阵

这个不是很显然了吗.既然A可对角化,那么A=PDP^{-1}.既然A的特征值相等,那么D=kI,从而A=kPP^{-1}=kI.

矩阵相似对角化问题求特征值,并问其是否可以对角化如果A相似于B 那么A是否能对角化?为什么?

这题很基本啊...看下面的再问:我这道题的问题出在特征方程了。。。。我算的特征方程是这个算出来特征值是0,0,1重根2不等于3-r(特征方程),故不能相似对角化。。。可是B为实对称矩阵又是能相似对角化

矩阵AB=BA,A可相似对角化,那么B可以相似对角化吗?A和B的特征值、特征向量相同吗?

A可相似对角化,那么B可以相似对角化吗?不一定可以,取A=E,B为任意矩阵.易知.但注意到,如果B可以对角化,那么他和A可同时对角化,即存在可逆矩阵P有P^(-1)AP和P^(-1)BP均为对角矩阵.

“所有的矩阵都可以合同对角化” 怎么证明?

首先,A一定要是对称矩阵,否则没希望.对于对称矩阵,只要用Gauss消去法就可以了,如果过程中对角元出现0但该列非零,那么作用一个旋转变换就可以了.

A为n阶矩阵,且A^2-A=2E,证明A可以对角化

很显然,因为极小多项式没有重根.再问:能不能给点过程,根就只有2,-1~n阶还有其他根呢,为0,不算重根?再答:不管n多大,A的特征值只能是2或-1,没有别的根。A的极小多项式是x^2-x-2的因子,

设A为2阶矩阵,且|A|=-1,证明A可以对角化

A为2阶矩阵,且|A|=-1,说明A有一个正的特征值,一个负的特征值,也就是两个不同的特征值.n阶矩阵有n个不同的特征值必可相似对角化,所以A可以相似对角化再问:A可也能只有一个正的或者负的特征值啊再

如果矩阵A可以对角化则其m重特征值必对应m个特征向量,这句话对吗

应该是如果矩阵A可以对角化则其m重特征值必对应m个“线性无关”的特征向量.特征值λ的重数,叫做λ的代数重数,λ对应的“线性无关”的特征向量的个数,叫做λ的几何重数.线性代数中与此相关的定理主要有①对于

n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量,但同一特征值所对应的特征向量就是无穷个,

这可能是概念问题属于同一特征值λ的特征向量是齐次线性方程组(A-λE)x=0的非零解确实有无穷多个但线性无关的解向量组最多含n-r(A-λE)个,即齐次线性方程组的基础解系所含向量个数另,n+1个n维

如果矩阵A 和B是同型矩阵 ,A 和B都能对角化且特征值相同,那么就能证明A和B相似对角化吗?

可以设λ1,...,λn是A,B的特征值则A,B都与对角矩阵diag(λ1,...,λn)相似由相似的传递性知A,B相似

求矩阵A=(1100)的特征值和特征向量,并判断是否可对角化

特征值为10特征向量(10)(1-1)可以对角化再问:计算题啊亲,给个过程啊再答: 可对角化 因为有两个特征向量

线性代数题目,关于矩阵特征值,对角化

你一点都不会?你一直在问,我都回答你好多题了再答:这个问题很基础很简单了再答:再答:这是思路,你自己看看再答:大学生要有点学习能力了再问:好的,谢谢

设A可逆矩阵且可对角化,证明A^(-1)也可以对角化

证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/

AB=BA A B 都可对角化,证明A+B可对角化

设Q^(-1)AQ=D=diag(a1E,a2E,...,akE),其中a1,a2,...,ak是A的不同特征值,对应重数即为l1,l2,...,lk.在AB=BA中左乘Q^(-1),右乘Q得DQ^(

两个矩阵相似,它们一定都可以对角化吗?

当然不是.例:A=1101对任一可逆矩阵P,P^-1AP与A相似,但它们不能对角化

一个线性代数问题 “若sqrt3是三阶方阵A的一重特征值,且|A|<0则A一定能对角化”这句话对吗?

|A|等于A的3个特征值之积.3个特征值,一个是√3>0,另外两个肯定是一正一负,这样A就有了3个互异的特征值,当然可对角化了.