A² A=2E,证明A可对角化

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/24 08:44:59
证明题:设A为n阶矩阵,且A^2-A=2E.证明A可对角化.

这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x&#

矩阵A的特征值都为正负一,且可相似对角化,证明A^2=E

看看能看懂不? 特征值都为正负1   对应相乘之后都是1 那个不影响结果~

方阵A满足A^2+A-I=0,证明:A可对角化

条件(A-aE)(A-bE)=0,其中ab不相等,则A可对角化.证明:当AB=0时有不等式r(A)+r(B)再问:原式怎么化解?具体步骤是什么?再答:x^2+x-1=0,解为a=[-1+根号(5)]/

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

高等代数 线性变换A^2=E,证明A可对角化

只需证明A的特征向量中能够选出n为向量空间的一组基:(不妨设A是n行n列的)首先设λ是A的特征值,那么λ^2是A^2的特征值,∴(A^2)ξ=λ^2*ξ=Eξ=ξ∴λ^2=1∴λ=±1∴A只有特征根±

矩阵AB=BA A,B对角化,证明A+B也对角化

AB=BA意味着A和B存在公共特征向量,再由条件可以得到A和B可以同时对角化.

矩阵A平方=A,如何证明A可对角化啊?

因为A^2=A所以A的特征值只能是0,1再由A(A-E)=0所以r(A)+r(A-E)再问:若rankA+rank(A-E)=n,如何证明A可对角化呢?再答:n-r(A)+n-r(A-E)=n所以A有

已知n阶方阵A满足A^2+2A-3E=0,证明A可对角化

[证明](方法一:构造法)见下图\x0d\x0d[证明](方法二:利用特征值与特征向量)见下图\x0d\x0d[证明](方法三:利用极小多项式)\x0d因为A满足A2+2A-3E=O,即(A-E)(A

设A为n阶方阵,r(A)=r1,r(A+E)=r2,r(A+2E)=r3,且r1+r2+r3=2n.证明A可对角化.

证明:Ax=0,(A+E)x=0,(A+2E)x=0三个齐次线性方程组的基础解系共含(n-r1)+(n-r2)+(n-r3)=3n-(r1+r2+r3)=n个向量.所以A有n个线性无关的特征向量所以A

设A为n阶方阵,r(A)=r1,r(A+E)=r2,r(A+2E)=r3,且r1+r2+r3=2n,证明A可对角化.

说一下思路吧.把A,A+E,A+2E放在一个大矩阵(3n×3n)的对角线上,通过分块矩阵初等变换可以化成diag[E,E,A(A+E)(A+2E)]这一步是难点,楼主不妨尝试一下.初等变换不改变秩,所

矩阵A (A-aI)(A-bI)=0 证明A可对角化

这是个与矩阵的特征值,对角化,矩阵的秩有关的综合题目用到多个知识点,好题!证明:(1)(A-aI)(A-bI)=A^2-(a+b)A+abI若λ是A的特征值则λ^2-(a+b)λ+ab是A^2-(a+

3阶实矩阵,满足(A-E)(A-2E)(A-3E)=0,证明其可以相似对角化.

由于(A-E)(A-2E)(A-3E)=0所以A的特征值只能是1,2,3(1)若1,2,3都是A的特征值,则3阶矩阵A有3个不同的特征值,故A可对角化(2)若1,2,3中两个是A的特征值,另一个不是-

A为n阶矩阵,且A^2-A=2E,证明A可以对角化

很显然,因为极小多项式没有重根.再问:能不能给点过程,根就只有2,-1~n阶还有其他根呢,为0,不算重根?再答:不管n多大,A的特征值只能是2或-1,没有别的根。A的极小多项式是x^2-x-2的因子,

设A为2阶矩阵,且|A|=-1,证明A可以对角化

A为2阶矩阵,且|A|=-1,说明A有一个正的特征值,一个负的特征值,也就是两个不同的特征值.n阶矩阵有n个不同的特征值必可相似对角化,所以A可以相似对角化再问:A可也能只有一个正的或者负的特征值啊再

设A可逆矩阵且可对角化,证明A^(-1)也可以对角化

证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/

矩阵AB=BA A,B对角化,怎么证明A+B也对角化

有一个定理:AB=BA,A,B都相似于对角阵.则存在公共的满秩方阵P.使P^(-1)AP与P^(-1)BP同时为对角形.这个定理还可以推广到{A1,A2.……,Ak}的情况:AiAj=AjAi(i.j

证明:如果矩阵A可对角化,则A~A'(A相似于A的转置)

设A可对角化为B,这意味着存在相似变换矩阵S使得B=S[-1]AS所以S'A'S'[-1]=B'=B=S[-1]AS于是A'=S'[-1]S[-1]ASS'=(SS')[-1]ASS'即存在相似变换矩

AB=BA A B 都可对角化,证明A+B可对角化

设Q^(-1)AQ=D=diag(a1E,a2E,...,akE),其中a1,a2,...,ak是A的不同特征值,对应重数即为l1,l2,...,lk.在AB=BA中左乘Q^(-1),右乘Q得DQ^(

已知矩阵A可对角化,证明A的伴随矩阵也可对角化

证明:矩阵A可对角化,则存在可逆阵P,使P^(-1)AP=N为对角阵,P*[P^(-1)AP]*P^(-1)=PNP^(-1)A=PNP^(-1),A可逆,则A^(-1)=[PNP^(-1)]^(-1