已知△ABC和△ADE都为等腰直角三角形连接BD,CF求∠BFC的度数

来源:学生作业帮助网 编辑:作业帮 时间:2021/03/02 12:20:09
已知:△ABC和△ADE分别是以AB、AE为底的等腰直角三角形,以CE、CB为边作

求CH与CD之间有何数量关系原题有3个小题吧,我给出了第三题的解答,如果前两题不懂,可以问我∵平行四边形HECB∴HE = CB,HE//CB∵等腰Rt△ACB∴AC =

如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC边中点,求证:△BMD为等腰直角三角形.

把直线AE、BE、AD逆时针旋转90°,则A旋转到C点,B、E对应点分别为B'、E'.△ABE全等于△CBE',BD=BD'.连接MD',下面证明D、M、D'在一条直线上.因为EB、CD'都垂直于BE

如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC中点,证△BMD为等腰直角三角形

证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC,∴DM=FM,DE=FC,∴AD=ED=FC,作AN⊥EC于点N,由已知∠ADE=90°,∠ABC=90°,可证得

已知:△ABC和三角形ADE都是等腰直角三角形,其中∠ABC=∠ADE=90°,点M为EC中点.求证三角形BMD是等腰

证明:∵∠ABC=90,M为EC的中点∴BM=EM=EC/2(直角三角形中线特性)∴∠MBE=∠MEB∴∠BME=180-2∠BEM∵∠ADE=90,AD=ED∴∠AED=45,∠EDC=90∴DM=

如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.

(1)证明:延长DM交BC于N,∵∠EDA=∠ABC=90°,∴DE∥BC,∴∠DEM=∠MCB,在△EMD和△CMN中∠DEM=∠NCMEM=CM∠EMD=∠NMC,∴△EMD≌△CMN,∴CN=D

已知三角形abc和三角形ADe都是等腰直角三角形,其中角abc等于角ADe等于九十度,点m为ec的中点. (1

(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=1/2EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.同理可证:DM=1/2EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠BCA

已知:△ABC和△ADE分别是以AB,AE为底的等腰直角三角形,以CE,CB为边作平行四边形CEHB,连CH,DC

1、先证明DH=CD,且DH与CD垂直,此时CD/CH为根号2的一半,角DCH=45度;旋转的过程中,“DH=CD,且DH与CD垂直”不变,结论和上面一样;2、当E在AC上时,即a=180度时,面积最

已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,使点E在BC

(1)DF=BF且DF⊥BF.(1分)证明:如图1:∵∠ABC=∠ADE=90°,AB=BC,AD=DE,∴∠CDE=90°,∠AED=∠ACB=45°,∵F为CE的中点,∴DF=EF=CF=BF,∴

已知:如图,△ABC和△ADE是有公共顶点的等腰直角三角形.求证:

证明:(1)∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△BAD与△CAE中,&nb

已知△ABC和ADE分别是以AB、AE为底的等腰直角三角形,以CE、CB为边作平行四边形CEH

你题目,瞎写了吧求CH与CD之间有何数量关系∵平行四边形HECB∴HE = CB,HE//CB∵等腰Rt△ACB∴AC = BC,BC⊥CA∴HE =

已知△ABC和△ADE分别是以AB、AE为底的等腰直角三角形,以CE,CB为边作平行四边形CEHB,连DC,CH.

(1)∵△ABC和△ADE是等腰直角三角形,四边形CEHB为平行四边形,∴∠AED=45°,∠AEH=∠ACB=90°,∴∠DEH=45°,连DH,如图1,∵∠DEH=90°-∠DEA=45°,∴∠A

如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90

1)连接CF2)△ADC≌△BFC3)直角三角形CDF,勾股定理证明DC和DF关系4)作辅助线是关键

如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.

(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=12EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.(2分)同理可证:DM=12EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠B

已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF、CF.

(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=12BE,CF=12BE,∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°∵BF=DF,∴∠DBF=∠BDF,∵∠DF

已知:△ABC和△ADE都是等腰直角三角形,其中∠ABC=∠ADE=90°,点M为EC的中点.

(1)证明:如图,∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,∴∠EDC=90°,BA=BC,∴∠BCA=45°,∵点M为EC的中点,∴BM=12EC=MC,DM=12EC=M

已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.

(1)△BMD是等腰三角形,理由是:∵∠ABC=∠ADE=90°,∴∠EDC=90°,∵点M是CE的中点,∴BM=12CE,DM=12CE,∴BM=DM,∴△BMD是等腰三角形;(2)BD=2BM,证

已知点D在AB上,△ABC 和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点

(1)连接AM,延长BM交AC于P则AM=CM=EM易证△ADM≌△EDM所以∠EDM=∠ADM又因为∠ADE=∠BDE=90°所以∠BDM=45°因为AM=CM则M在线段AC的垂直平分线上所以BP⊥