如图,点a,b是圆o上的两点,ab等于10,是圆o的四个点

来源:学生作业帮助网 编辑:作业帮 时间:2022/07/01 02:57:57
如图,已知直线PA交圆O于A、B两点,AE是圆O的直径,点C为圆O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D

设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD&#

如图,圆O与圆O'交于A,B两点,点O在圆O'上,圆O'的弦OC交AB于D

∵∠OBA=∠OCA,且∠OAB=∠OCB,又∵∠OBA=∠OAB,∴∠OBA=∠OCB,∵∠BOC=∠BOC,∴△OBD∽△OCB(A.A.),∴r/OC=BD/BC,∴r×BC=OC×BD,同理,

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,点C为圆O上一点,且AC平分角PAE,过C作CD⊥PA,垂足D

过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD

如图,已知直线PB交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为

连接OC,过点O作OF⊥AC于F∵CD⊥PA,OF⊥AC∴∠ADC=∠AFO=90∵AC平分∠PAE∴∠PAC=∠OAC∴△ACD∽△AOF∴AF/OF=AD/CD∵CD=2AD∴AD/CD=1/2∴

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径.点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为

1连接OC因为OA=OC所以∠OAC=∠OCA因为∠OAC=∠PAC所以∠OCA=∠PAC所以OC//PA因为CD⊥PA所以OC⊥CD所以CD是⊙O的切线2连接CE因为CD⊥PA,AD:CD=1:3所

如图,已知直线 交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA ,垂足为D

出现DC+DA=6一般首先考虑从几何上构造.但是这个题有更简单的方法.题目给出AE=10,而三角形ACD和AEC相似,设AD=x,DC=y,可以根据相似关系列出xy的一个关系式.结合x+y=6可以列两

如图,A,B是圆O上的两点,∠AOB=120°C是弧AB的中点,求证四边形OBCB是菱形

证明:连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形再问:你确定你没有看错图?

和圆有关如图,直线L经过圆O的圆心O,且与圆O交于A、B两点,点C在圆O上.且角AOC=30°,点P是直线L上的一个动点

一楼中,当CQ⊥OP时,QO是斜边,而QP是直角边,不可能有QO=QP二楼中,点P与点B重合时,点Q也与点P重合,此时QP退化成一个点,而QO是半径,也不可能相等我的解答如图所示:

如图,圆O与圆P相交于A.B两点.圆P经过圆心O,点C是圆P的优弧AB上任意一点,连AB.AC,BC,OC.(1)指出

答案是这样的:(1)指出图中与角ACO相等的一个角;∠ACO=∠BCO(2)当点C在圆P什么位置时,直线CA与圆O相切?说明理由.当点在圆O上点D位置时,直线CA与圆O相切连接OP并延长,交圆O于点D

如图,在平面直角坐标系中,圆O的半径是3,A,B两点的坐标分别是(5,0),(0,b).(3)当点B在Y轴上运动时,直线

(1)相切时.∵r=3,OA=5∴AB=(|b|*5)/3∴由勾股定律得,b的平方+5的平方=AB的平方∴b=15/4或-15/4(2)相离时.b>15/4或b<-15/4(3)相交时.-15/4<b

如图,圆O与圆O'相交于A,B两点,点O在圆O'上,圆O'的弦OC交AB于点D,交圆O于点E,求

详细的在WORD文档里面,部分公式和图形复制不下来 证明:连接OA,OB(1)在圆O中,半径OA=OB,     在圆O’中,等弦长OA,O

如图,在直角坐标系中,已知两点O(3,0),B(—2,0),圆O1与X轴交于原点O和点A,E是Y轴上的一个动点,

先做出切线OP长为4,那么EP=EO=m,BE=4-m然后在RT△BOE中用勾股求出m得E点坐标再求解析式

如图,已知A、B是数轴上的两点,点B表示的数为

可以给我一下你的QQ不,偶慢慢和你讲再问:1242473494

已知二次函数y=ax2(a≥1)的图像上两点A、B的横坐标分别是-1、2,点O是坐标原点,如

A(-1,a),B(2,4a),OA平方=a^2+1,OB平方=4+16a^2,AB平方=9+9a^2,可以看出OA最小,不可能是斜边.假设AB为斜边,则依勾股定理可得9+9a^2=a^2+1+4+1

(2014•芜湖模拟)如图,点A,B是单位圆O上的两点,点C是圆O与x轴正半轴的交点,将锐角α的终边OA按逆时针方向旋转

(Ⅰ)由题意可知∠xOA=α,A的坐标为(35,45),即cosα=35,sinα=45,锐角α的终边OA按逆时针方向旋转π3到OB.∴点B的横坐标为cos(α+π3)=cosαcosπ3-sinαs

如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧AB上任意一点(不与点A、B重合),连接AB、AC、B

:(1)∵OA^=OB^,∴∠ACO=∠BCO;(2)连接OP,AO,并延长与⊙P交于点D若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴OA⊥DA∴DA与与⊙O相切即

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.

(1)证明:连接OC.∵OC=OA,∴∠OAC=∠OCA.∵AC平分∠PAE,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵CD⊥PA,∴∠ADC=∠OCD=90°,即 CD⊥

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60