利用三重积分计算下列曲线围成的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/28 00:34:35
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=

再问:谢谢(不过最后一步写错了,5/2还要乘2π/3

利用函数的奇偶性计算下列积分:

14(1)f(x)=x⁴sinxf(-x)=(-x)⁴sin(-x)=-x⁴sinx为奇函数.积分区间关于y轴对称,积分为0(2)cos⁴θ为偶函数,可

利用曲线积分计算心形线r=a(1-cosx)围成图形的面积

S=(1/2)∫(0->2π)(r^2)dθ=(1/2)∫(0->2π)[a^2(1-cosθ)^2]dθ=(3πa^2)/2

定积分计算下列曲线围成的平面图形的面积

0到1区间内(y=e的x次方)-(y=e的负x次方)=2(e-1)

高等数学利用柱面坐标计算三重积分.

仅供参考再问:答案不对…>.

利用三重积分计算由曲面z= √(x^2+y^2),z=x^2+y^2所围成的立体体积

这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用

利用三重积分计算由曲面所围成的立体的体积

由z=6-x-y,z=√(x+y)得D:0≤x+y≤4空间闭区域Ω可表示为:{(x,y,z)|√(x+y)≤z≤6-x-y,0≤x+y≤4}V=∫(上限2π,下限0)dθ∫(上限2,下限0)rdr∫(

利用三重积分计算z=√(5-x^2-y^2)及x^2+y^2=4z所围成的体积

z=√(5-x^2-y^2)与x^2+y^2=4z,联立解,消去z,得x^2+y^2=4,即交线在xOy平面上的投影.V=∫∫∫dv=∫dt∫rdr∫dz=π∫r[√(5-r^2)-r^2/4]dr=

利用定积分的性质和定义表示下列曲线围成的平面区域的面积.

先求两条曲线的交点,联立两方程y=x-2x=y²解得x1=1,y1=-1x2=4,y2=2交点为(1,-1)和(4,2)两交点之间,曲线x=y²在y=x-2上方∴曲线围成的平面区域

高数--三重积分的计算

这个三重积分的积分区域V是由扣在xoy面上、顶点在(0,0,1)的圆锥面与底圆x^2+y^2=1围成的,从而,采用柱面坐标,这个三重积分=∫(0到2∏)dθ∫(0到1)rdr∫(0到1-√x^2+y^

关于三重积分计算体积的问题.

用平行截面积方法做:可以把所求体积分成二部分:用数学方法可以得到二部分的相交曲面是:z+z^2+2=0故所求体积:v=∫(0~1)πzdz+∫(1~√2)π(2-z^2)dz=1/2πz^2|(0,1

原题:计算三重积分,其中积分区域D是由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域.

先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:

求助一个利用柱坐标计算三重积分问题

设x=rcos(t),y=rsin(t),r>0,0z}=PI*S_{z:0->1}ln(1+z^2)dz=PI*{[zln(1+z^2)]_{z:0->1}-S_{z:0->1}2z^2dz/(1+

三重积分计算体积的简单方法

计算三重积分方法很多,一般需要具体问题具体分析没有一定的定式,但是较简单的方法,一般有三重积分化为3次积分,利用球坐标,柱坐标等等.我是高等数学教师相信我.

一道利用直角坐标系计算三重积分的题

h>0==>z=(h/R)√(x²+y²)截面:x²+y²=R²,-√(R²-x²)≤y≤√(R²-x²)∫∫

利用球面坐标计算三重积分

坐标变换:x=rsinacosb,y=rsinasinb,z=rcosa,0